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Abstract-Extensive parametric studies are made of Row and heat transfer of a viscous fluid contained in 
a square cavity. Flow is generated by the top horizontal boundary wall, which slides in its own plane at 
constant speed. A stabilizing externally-applied vertical temperature gradient is imposed on the system 
boundaries: the top wall is maintained at a higher temperature than the botom wall. Numerical solutions 
to the Navier-Stokes equations are secured over broad ranges of the parameters, 0 < Ru i IO”. 
0 < Re $ 3000. Pr c O(I). aspect ratio -O(I). Systematical evaluations of the numerical results are 
carried out to ascertain the relative importance of natural and forced convections. Representative plots 
illustrating the velocity and thermal fields are presented. These clearly identify the major dynamic elements 
in various regimes of the parameter spaces. When Gr/Re’ < I. the flow features are similar to those of a 
conventional driven-cavity of a non-stratified fluid. In the bulk of the interior, fluids are well mixed and 
temperature variations are small. When Gr/Re’ >> I, much of the middle and bottom portions of the cavity 
interior is stagnant. In these regions. isotherms are nearly horizontal. and vertically-linear temperature 
distributions are seen. By inspecting separate plots of i;T,&s and - PrRe.vT, contributions to total heat 
transfer by conduction and by convection are assessed in a quantitative manner. The Nusselt number at 

the top wall is calculated, and these results indicate the intensification of heat transfer as Gr/Re’ K I. 

1. INTRODUCTION 

FLOW OF a viscous fluid contained in a rectangular 
cavity, with one of its boundary walls sliding at 
constant speed U,, constitutes an appealing bench- 
mark problem in numerical exercises. The geometry 
is straightforward and the boundary conditions are 
regular. The flow is characterized by two principal 
non-dimensional parameters, i.e. the Reynolds num- 
ber, RE = C/,h/v, and the cavity aspect ratio, A = 
h/W, in which h and Ware height and width of the 
cavity, and v is the kinematic viscosity of the fluid. 
Results of extensive numerical computational studies 
are available in the literature [ l-91, and the consistency 
between these numerical predictions and laboratory 
experiments [3-51 has been explored [8,9]. 

The introduction of a temperature gradient into the 
cavity boundaries produces an additional significant 
dynamical ingredient. The thermal non-homogeneity 
gives rise to buoyancy and this, in turn, impacts upon 
the coupled fields of velocity and temperature in 
the cavity. An understanding of this mixed forced- 
natural convective flow is of value from the standpoint 
of basic fluid dynamics as well as in practical engin- 
eering applications. A survey of the relevant literature, 

however, reveals that studies of mixed convection 
within a closed cavity are relatively scarce. 

Recently, Mohamad and Viskanta [IO] reported the 
results of numerical investigations of mixed con- 
vective flow in a shallow cavity (A << I). It should be 
noted that, in their analysis, the temperature at the 
top sliding surface, TT, was lower than that at the 
stationary bottom surface, r,. The two vertical side 
walls were thermally insulated. This created a gravi- 
tationally unstable flow configuration. The major 
elements of velocity and thermal characteristics 
were exhibited in the ranges of 200 < RE < 1000 
and 500 < 1 Ral < IO“. Here, the buoyancy effect is 
measured by the Rayleigh number JRal, and the value 
of Ra may be interpreted to be negative as 
AT = T, - T, < 0. In particular, the computed results 
of this study illustrated the changes in the basic 
character of a gravitationally unstable configuration 
in a shallow cavity as Re and Ra encompassed the 
above-stated ranges. 

As is evident in the non-dimensionalized governing 
equations, the fluid flow and accompanying heat 
transfer are characterized principally by four dimen- 
sionless parameters, i.e. Re, Gr, A and Pr. In the 
ensuing discussions, the aspect ratio is fixed to be 
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n = I .O (a square cavity). and the Prandtl number is 
set at PI = 0.71 in most cases. This will allow cvalu- 
ations of the explicit influences of forced convection 
(represented by Re) and of natural convection (typi- 
fied by G,). The ratio Gr/Re’ emerges as a measure 
of the relative imporlance of natural convection to 
forced convection. 

As pointed out earlier. the numerical work of 
Mohamad and Viskanta [IO] was concerned with the 
cases when the externally-applied temperature diffcr- 
encc was negative (AT < 0). i.c. the bottom wall was 
heated. It is now proposed in the present endeavdr 
to cxaminc the flow and heat transfer properties in 
the cavity when the externally-imposed tempera- 
ture diffcrcncc leads to a gravitationally-stable con- 
figuration. Specifically. the top surface wall. which 
slides at constant velocity I/,,, is maintained at tem- 
perature T,-, which is higher than the temperature at 
the stationary bottom wall, 7,. i.e. AT = T-,-- TR > 0. 
In contrast to the gravitationally unstable con- 
figuration of Mohamad and Viskanta [IO]. the system 
under present study will sustain a state of rest if the 
top surface wall is stationary. In this situation, heat 
transfer is entirely based on the conductive mode. 
Howcvcr. the sliding motion of the top surface wall 
brings about fluid flows inside the cavity. Of primary 
interest is the effect of the stable stratification on the 
global flow and thermal fields. In practical terms, the 
augmentation of heat transfer rate, above that given 
by conduction alone, which is brought forth by forced 
convection, is of great significance. Stated alterna- 
tively, under a given imposed stable vertical tem- 
perature difference across the system, AT = T-r-T,,, 
the present investigation aims to delineate the heat 
transfer enhancement and the accompanying velocity 
field, which are achieved by forcing the top wall to 
slide in its own plane. In general, it is expected that, 
for a given value of Re. the stable stratification tends 
to inhibit vertical motions. Consequently, effective 
convective heat transfer is anticipated to decrease as 
the stable system-wide stratification intensifies. 

In the present account, comprehensive numerical 
solutions were acquired to the complete Navier- 
Stokes equations using very fine grid meshes. Both 
the ranges of ] RN[ and Re were extended to cover the 
broader spectra of flow characteristics. Details of flow 
and thermal field structures will be depicted, and 
quantitative assessments will be made to portray the 
salient features in various parameter settings. The 
overriding motivation of this study is, as ascertained 
earlier. to demonstrate the substantial increase in 
global heat transfer above that given by the con- 
ductive mode. This is accomplished by forced con- 
vection, which is caused by the sliding top surface 
wall. 

2. PROBLEM FORMULATION 

The definition sketch of the problem is displayed in 
Fig. 1. The governing equations are the incom- 
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FIG. I. Flow configuration and coordinate system. 

pressible Navier-Stokes equations. The customary 
Boussinesq approximation is employed. These equa- 
tions, expressed in properly non-dimensionalized 
form, are 

div V = 0 (1) 

SV 
- +(V*grad)V = -gradp+Rr-’ AV 
at 

tlT 

+Gr*Re-’ Te (2) 

Z +(V*grad)T= (Pr*Re)- ‘AT, (3) 

where V = (u, u) is the velocity vector, p the pressure, 
T the temperature and e = (0, I) a unit vector in the 
direction of the buoyancy force. In the above, the 
relevant dimensionless parameters are identified as: 

Re = U,,LIv 

RN = bAT/r’/rti 

Pr = v/ti 

Gr = Ra/Pr. 

In accordance with the problem description, the 
boundary conditions are stated as : 

V=(l,O) at )‘=I, O<x<l, 

V=O at s=O,l, O<~j<l 

and y=O, O,<s< I, 

T= 0 at ~3 = 0, 0 < I < I, 

T&l at )‘=I, O<x,<l, 

i3T 
%=O at s=O and s= I, O<y,< I. 

The above system of equations is solved by resort- 
ing to a well-established finite difference numerical 
procedure. This numerical model represents an 
amended version of the MAC method [I I-141. Exten- 
sive model verifications have been documented as to 
the reliability and accuracy of this numerical 
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technique. For complete details, the reader is referred 
to the prior publications [15-l 71, 

In order to test the spatial grid convergence, cal- 
culations were repeated using several different spatial 
resolutions, i.e. As = 8~3 = l/64. l/l28 and l/256 for 
Re = 100 and Gr = IO”; and A.u = A?‘= I1128 and 
l/256 for Rc = 3000 and Gr = IO”. For these tests, 
Ar = 0.005. 0.002 and 0.001 for As = A?, = l/64, 
l/l28 and l/256. respectively. The outcome of these 
cxerciscs indicated that the discrepancies in the com- 
puted velocity and temperature fields wcrc less than 
I % 

In summary, the above-stated sensitivity tests 
clearly demonstrated that the solutions are, to a fair 
degree of accuracy, independent of the grids and time 
intervals adopted in the present study. Consequently. 
in the numerical computations, As and A,r wcrc 
chosen tither as I / I28 or I /256. 

At the initial state, it is assumed that the fluid is 
motionless and a linear temperature stratification prc- 
vails throughout the whole domain. Calculations are 
continued until steady motion is attained. The tran- 
sitory approach toward the steady state is not of 
primary concern here and it will not be treated in the 
prcscnt treatise. 

3. RESULTS 

As is immediately clear from the non-dimcn- 
sionalized governing equations, the ratio GI./RL" pro- 
vides a measure of the importance of buoyancy-driven 
natural convection relative to lid-driven forced con- 
vection. If Gr/Re' cc I. the buoyancy effect is over- 
whelmed by the mechanical effect of the sliding lid. 
Therefore, as displayed in Fig. 2. the qualitative 
character of flow is similar to the conventional lid- 

***tJMIE,tJd\X,VMIN,VMAX 
***l -0.20370626 1.0000000 -0.24480307 
***'2 -0.31979227 1.0000000 -0.44589245 
***3 -0.37819362 1.0000000 -0.51784348 
*x*4 -0.42407644 1.0000000 -0.55746049 

driven cavity flow of a non-stratified fluid. At high 
Reynolds numbers. the emergence of boundary laycr- 
like flow features is apparent. These characteristics 
have been scrutinized in detail in preceding pub- 
lications [8,9]. 

As anticipated, the prornincncc of buoyancy effects 
is discernible throughout the cavity when Gr/ 
Re’ > O(l). Figure 3. at Gr = IO”. cxcmplitics this 
trend. In Fig. 3. curves (a) and (b) correspond to the 
casts Gr/Rc >> I. Due to the dominant influcncc 01 
stabilizing buoyancy effects. the flows are almost stag- 
nant in the bulk of the cavity interior. excluding the 
portions close to the sliding top wall. This typifcs the 
flow structure which is stabilized by buoyancy-driven 
natural convection. It is strcsscd again that the prcscnt 
result is in contrast to the previous work of Mohamad 
and Viskanta [IO], which dealt with a gravitationally 
unstable flow configuration. Curves (c) and (d) are 
characterized by Gr/Re’ < O(l): the qualitative 
velocity profiles arc similar to those shown in Fig. 2. 
for which Gr/ RcZ cc O( I ). 

The numerical results arc rearranged to demon- 
stratc the change in basic Row character as G/ 
incrcascs at a fixed Re, as displayed in Fig. 4. The 
changeover of the principal flow pattern is evident, 
as the criterion Gr/Re’ < O(I) is strongly satisfied 
(curves (a) and (b)) or not (curve (c)). 

The global flow and temperature fields arc depicted 
in Figs. 5 and 6. When the buoyancy effects arc 
relatively small. Gr/Re’ << I, the gross flow fcaturcs 
of Fig. 5 are similar to those of a conventional mcch- 
anically-driven cavity flow of a non-stratified fluid at 
comparable values of Re. The main circulation fills the 
entire cavity ; minor cells arc visible near the bottom 
corners. The isotherms are clustered close to the bot- 
tom lid, which points to the cxistcnce of steep tem- 

0.16998208 
0.29554427 
0.36577463 
0.41593158 

FE. 2. Velocity profiles. (a) Profles of horizontal velocity, U, along the vertical center line. .v = 0.5. (b) 
Profiles of vertical velocity, (1, along the horizontal midheight, J’ = 0.5. Gr = IO’. The Reynolds numbers 

are:(a) Re = 100; (b) Re = 400;(c)Re = 1000; (d) Re = 3000. 
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d 

FIG. 3. Same as in Fig. 2 except for Gr = IO” 

perature gradients in the vertical direction in this 
region. In the bulk of the cavity except this localized 
area, however, the temperature gradients are weak. 
This implies that, due to the vigorous actions of mech- 
anically-driven circulations, fluids are well mixed ; 
consequently, the temperature differences in much of 
this interior region are very small. On the other hand, 
when the buoyancy effects outweigh the effects of the 
sliding wall, i.e. Gr/Re’ >> I, the flow and temperature 
fields are typified in Fig. 6. The interior circulation is 
restricted to a small zone close to the sliding top lid. 
The impact of the mechanically-driven top lid pene- 
trates only small distances toward the interior region. 
Obviously, the stable stratification inhibits vertical 
motions; much of the fluid remains stagnant in the 

middle and bottom interior regions. The vertical tem- 
perature stratification is substantially linear in the 
stagnant bulk of the interior regions. This reflects the 
fact that heat transfer is mostly conductive in the 
middle and bottom parts of the cavity. Only in a 
relatively small region in the top portion of the cavity 
are fluids comparatively well mixed; temperature is 
fairly uniform in this region, where the mechanically- 
induced convective activities are appreciable. 

A systematic representation of the vertical tem- 
perature structures is portrayed in Fig. 7. Evidently, 
all the temperature profiles should satisfy the bound- 
aryconditions:T=Oaty=OandT=laty=l.In 
the limit when the top lid is stationary, Re + 0 or 
Gr/Re’ x I at a finite Re, the interior fluid is motion- 

***UMIN,UMAX,VMIN,VMAX 
***I -0.31979585 1.0000000 -0.44589722 0.29555106 
***2 -0.30951858 1.0000000 -0.43180406 0.28371251 
***3 -0.26322138 1.0000000 -8.9775212lE-04 7.24285096E-03 

FIG. 4. Same as in Fig. 2. Re = 400. The Grashof numbers are: (a) Gr = IO’; (b) 10J; (c) 10” 
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TR:MIN,RMAX,LMAX -0.11521769 1.58714270E-03 2.56162835E-04 X,Y:MIN,RMAX,LMAX 
053307390 0.56809336 0.86770427 0.11673146 8.94941092E-02 8.56030583E-02 T,M 
d,MAX 0.00000000E+00 0.99785382 

FIG. 5. Plots of the fields of velocity (a) and temperature (b). Re = 10’. Gr = IO’. 

less and the corresponding temperature distribution 
approaches the linear profile obtained by the con- 
duction solution. In the opposite case, when the buoy- 
ancy effect is minor, Gr/Re’ << 1, much of the tem- 
perature variations is achieved in narrow strips 
adjacent to the top and bottom lids. In the middle 
portions of the cavity, the temperature changes are 
very small ; as asserted earlier, these regions of near- 
uniform temperatures correspond to the areas in 

which the mechanically-induced activities are appreci- 
able. 

The total vertical heat transport at a given height 
y = y may be expressed as 

(4) 

In the above. the first and second terms denote the 

TEHPERATURE STREAU LINE 

FIG. 6. Same as in Fig. 5, except for Re = 1000, Gr = IO’. 
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FIG;. 7. Vertical tcmpcraturc prolilcsalongs = 0.5. Rc = 400. 
The values of Gr are: (a) Gr = IO’; (b) Gr = IO’; (cl 

Gr = IO”. 

contributions attributable to conductive mode and 
convective mode, respectively. By inspecting separate 
plots of these two terms. the relative magnitude of 
each contribution may be appraised clearly. Figure 8 
exemplifies such plots. Curve (cf. for which Gr/Rc’ >> 1. 
points to an ovcrwhclming dominance of conduction, 
i.e. ?Tj?j* + I .O and - Pr Rc - rT - 0 over nearly the 
entire region of the cavity. On the other hand. when 
Gr/Re’ < O(I). the substantial contribution of con- 
vectivc heat transport, shown by the magnitudes of 
-PrRe * I:T in the middle and upper portions of 
the cavity is manifest. This scrutiny of the separate 
profiles of (4) reaffirms the qualitative trends discussed 
in the above. 

Additional runs were made to inquire as to the 
effect of the Prandtl number Pr. Figure 9 exemplifies 
the qualitative aspects of the global temperature fields 
when Gr/Re’ - O(1). Clearly. when Pr << I, the tem- 
perature distribution in the interior tends to the ver- 
tically-linear profile. This is demonstrative of the pre- 
vailing conductive heat transfer. When Pr is large. the 
upper part of the cavity interior is occupied by a 
strong circulatory cell. which renders a region of well- 
mixed fluids. Therefore, the vertical temperature pro- 

FIG. 9. Vertical temperature profiles along s = 0.5. 
Rc = 1000. Gr = IOh. The values of Pr arc: (a) Pr = 0.01 : 

(b) Pr = 0.71 : (c) Pr = 10.0. 

file in the interior shows a zone of quite uniform 
tcmperaturc in the top portion of the cavity. However. 
in the bottom part of the cavity, the influence of the 
moving top boundary wall is relatively weak. The 
temperature distribution in this area illustrates a 
vertically-linear distribution. which reflects the preva- 
lence of the conductive mode in this region. 

Utilizing the wealth of computed results. the total 
heat transfer attainable at the top surface wall is cal- 
culated. This is represented by the Nusselt number 
NLI, which is defined as 

ds. 
I’= I 

(5) 

The exemplary results of these calculations are con- 
tained in Table I. Clearly, as Gr/Rr’ >> I, the domi- 

Table I. The Nussclt number Nu at the lop wall 

RC Gr = IO-’ Gr = IO’ Gr = IO’ 

100 I .94 1.34 I .O’ 
400 3.84 3.62 I .22 

1000 6.33 6.29 1.77 

O.&j---J 
0. 10. 

-P,R,VT 

FIG. 8. Vertical profiles of ar/ii, and - Pr RevTalong s = 0.5. Re = 100. The values of Gr are : (a) Gr = 10’; (b) Gr = IO’; 
(c) Gr = 10”. 
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Nu 

X 
1 

FE. 10. Local Nusselt number profles at the top and bottom walls. Profiles are along: (a) top wall. 
J’ = 1.0: (b)bottom wall.!’ = 0.0. (a) Re = 400. Gr = IO’. Pr = 0.71. (b) Re = 400, Gr = 100. Pr = 0.71. 

nance by conduction is obvious. and Ntr + 1.0. 
accordingly. The intensification of heat transfer, 
induced by mechanically-driven forced convection. is 
apparent as Gr/Re’ K I. 

The variations of local Nussclt number at the top 
and bottom walls are of intcrcst in the practical design 
of heat transfer equipment. Figure IO(a) shows the 
results (Re = 400. Gr = IO”. Pr = 0.71); the Ruid 
motions are generally subdued and heat transport in 
the interior is dominated by conduction. Conse- 
quently. Nu at the bottom wall is close to unity. At 
the sliding top wall. owing to the presence of the 
circulation near the top left corner, convcctivc heat 
transfer is appreciable. However. in the vicinity of 
the top right corner, the fluid temperature is fairly 
uniform in the vertical direction. Figure IO(b) por- 
trays the local Nusselt number variations (Re = 400, 
G, = 100, Pr = 0.71) when convective activities are 
dominant. The behavior of the Nusselt number pro- 
files at both boundary walls clearly points to the exis- 
tence of substantial fluid motions, leading to enhance- 
ment of heat transport throughout the cavity. 

This baseline information is also useful to designers 
of practical heat exchangers. In addition, these nu- 
merical results will serve as reference materials against 
which further numerical or observational data may 
be compared. 

4. CONCLUDING REMARKS 

Numerical examinations are performed of mixed 
convective flow and heat transfer in a driven-cavity of 
aspect ratio O(l). The effect of the mechanical drive 
of the top wall is represented by Re. A stabilizing 
externally-imposed vertical temperature differential. 
AT ( = Top - Ttmm ) > 0, is enforced on the system 
boundaries. The flow configuration is in contrast to 
that adopted in the previous study of Mohamad and 
Viskanta, who considered shallow, bottom-heated 
cavities. 

When Gr/Re’ << I, the buoyancy effect is out- 
weighed by forced convection, and the flow charac- 

teristics arc similar to those of a conventional lid- 
driven cavity of a non-stratified fluid. The isotherms 
arc clustcrcd only in narrow strips adjacent to the top 
and bottom walls. In the bulk of the central regions 
of the cavity. fluids are well mixed and temperature 
variations arc very small. 

Prominent buoyancy-driven convective features arc 
discernible when Gr/Re’ >> I. The direct effect of the 
sliding top wall penetrates only small distances into 
the interior region. Much of the middle and bottom 
portions of fluids is stagnant. In these near-stagnant 
regions. the isotherms are fairly horizontal and ver- 
tically-linear tempcraturc distributions prevail. Only 
in small regions near the top sliding wall arc fluids 
well mixed, and zones of frtirly uniform temperature 
are noticeable. 

The influence of Pr over the flow characteristics is 
studied for casts at Gr/Re’ - O(l). When Pr is low, 
the temperature field in the interior tends to a 
vertically-linear profile throughout the entire cavity. 
However, when Pr is high, the upper part of the cavity 
represents a region of well mixed fluids. The tem- 
perature field is fairly uniform in the upper portion 
of the cavity. In the bottom part of the cavity. the 
temperature distribution shows a vertically-linear 
profile. 

Further inspections of the numerical results are cor- 
roborative of the qualitative features described in the 
above. 
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